1,261 research outputs found

    A No-Go Theorem for Gaussian Quantum Error Correction

    Full text link
    It is proven that Gaussian operations are of no use for protecting Gaussian states against Gaussian errors in quantum communication protocols. Specifically, we introduce a new quantity characterizing any single-mode Gaussian channel, called entanglement degradation, and show that it cannot decrease via Gaussian encoding and decoding operations only. The strength of this no-go theorem is illustrated with some examples of Gaussian channels.Comment: 4 pages, 2 figures, REVTeX

    Quantum entanglement enhances the capacity of bosonic channels with memory

    Full text link
    The bosonic quantum channels have recently attracted a growing interest, motivated by the hope that they open a tractable approach to the generally hard problem of evaluating quantum channel capacities. These studies, however, have always been restricted to memoryless channels. Here, it is shown that the classical capacity of a bosonic Gaussian channel with memory can be significantly enhanced if entangled symbols are used instead of product symbols. For example, the capacity of a photonic channel with 70%-correlated thermal noise of one third the shot noise is enhanced by about 11% when using 3.8-dB entangled light with a modulation variance equal to the shot noise.Comment: 4 pages, 4 figure

    Information transmission via entangled quantum states in Gaussian channels with memory

    Full text link
    Gaussian quantum channels have recently attracted a growing interest, since they may lead to a tractable approach to the generally hard problem of evaluating quantum channel capacities. However, the analysis performed so far has always been restricted to memoryless channels. Here, we consider the case of a bosonic Gaussian channel with memory, and show that the classical capacity can be significantly enhanced by employing entangled input symbols instead of product symbols.Comment: 13 pages, 5 figures, Workshop on Quantum entanglement in physical and information sciences, Pisa, December 14-18, 200

    Probing DNA conformational changes with high temporal resolution by Tethered Particle Motion

    Full text link
    The Tethered Particle Motion (TPM) technique informs about conformational changes of DNA molecules, e.g. upon looping or interaction with proteins, by tracking the Brownian motion of a particle probe tethered to a surface by a single DNA molecule and detecting changes of its amplitude of movement. We discuss in this context the time resolution of TPM, which strongly depends on the particle-DNA complex relaxation time, i.e. the characteristic time it takes to explore its configuration space by diffusion. By comparing theory, simulations and experiments, we propose a calibration of TPM at the dynamical level: we analyze how the relaxation time grows with both DNA contour length (from 401 to 2080 base pairs) and particle radius (from 20 to 150~nm). Notably we demonstrate that, for a particle of radius 20~nm or less, the hydrodynamic friction induced by the particle and the surface does not significantly slow down the DNA. This enables us to determine the optimal time resolution of TPM in distinct experimental contexts which can be as short as 20~ms.Comment: Improved version, to appear in Physical Biology. 10 pages + 10 pages of supporting materia

    Summer Drivers of Atmospheric Variability Affecting Ice Shelf Thinning in the Amundsen Sea Embayment, West Antarctica

    Get PDF
    Satellite data and a 35-year hindcast of the Amundsen Sea Embayment summer climate using the Weather Research and Forecasting model are used to understand how regional and large-scale atmospheric variability affects thinning of ice shelves in this sector of West Antarctica by melting from above and below (linked to intrusions of warm water caused by anomalous westerlies over the continental shelf edge). El Nino episodes are associated with an increase in surface melt but do not have a statistically significant impact on westerly winds over the continental shelf edge. The location of the Amundsen Sea Low and the polarity of the Southern Annular Mode (SAM) have negligible impact on surface melting, although a positive SAM and eastward shift of the Amundsen Sea Low cause anomalous westerlies over the continental shelf edge. The projected future increase in El Nino episodes and positive SAM could therefore increase the risk of disintegration of West Antarctic ice shelves

    BIOMECHANICAL ANALYSIS OF STARTING PREFERENCE FOR EXPERT SWIMMERS

    Get PDF
    The purpose of this study was to compare kinetics, body angles and angular momenta during the swimming start for preferred and non-preferred technique of expert grab starters. Results showed that in preferred technique, starts were executed with less global angular momentum around the transverse axis. By searching further, less loss of angular momentum in the other dimensions was found for grab start as preferred technique, inducing a less efficiency in non-preferred technique (twisting effect in track start as non-preferred technique). Body angles showed that legs in non-preferred technique permit to increase quantity of body rotation during aerial phase. Finally, subject effect was found for arms movements (confirming that expert swimmers can organize themselves differently to achieve to an optimal performance

    Molecular modeling and imaging of initial stages of cellulose fibril assembly: Evidence for a disordered intermediate stage

    No full text
    International audienceThe remarkable mechanical strength of cellulose reflects the arrangement of multiple ÎČ-1,4-linked glucan chains in a para-crystalline fibril. During plant cellulose biosynthesis, a multimeric cellulose synthesis complex (CSC) moves within the plane of the plasma membrane as many glucan chains are synthesized from the same end and in close proximity. Many questions remain about the mechanism of cellulose fibril assembly, for example must multiple catalytic subunits within one CSC polymerize cellulose at the same rate? How does the cellulose fibril bend to align horizontally with the cell wall? Here we used mathematical modeling to investigate the interactions between glucan chains immediately after extrusion on the plasma membrane surface. Molecular dynamics simulations on groups of six glucans, each originating from a position approximating its extrusion site, revealed initial formation of an uncrystallized aggregate of chains from which a protofibril arose spontaneously through a ratchet mechanism involving hydrogen bonds and van der Waals interactions between glucose monomers. Consistent with the predictions from the model, freeze-fracture transmission electron microscopy using improved methods revealed a hemispherical accumulation of material at points of origination of apparent cellulose fibrils on the external surface of the plasma membrane where rosette-type CSCs were also observed. Together the data support the possibility that a zone of uncrystallized chains on the plasma membrane surface buffers the predicted variable rates of cellulose polymerization from multiple catalytic subunits within the CSC and acts as a flexible hinge allowing the horizontal alignment of the crystalline cellulose fibrils relative to the cell wall

    Quantum dynamics in high codimension tilings: from quasiperiodicity to disorder

    Full text link
    We analyze the spreading of wavepackets in two-dimensional quasiperiodic and random tilings as a function of their codimension, i.e. of their topological complexity. In the quasiperiodic case, we show that the diffusion exponent that characterizes the propagation decreases when the codimension increases and goes to 1/2 in the high codimension limit. By constrast, the exponent for the random tilings is independent of their codimension and also equals 1/2. This shows that, in high codimension, the quasiperiodicity is irrelevant and that the topological disorder leads in every case, to a diffusive regime, at least in the time scale investigated here.Comment: 4 pages, 5 EPS figure

    Exogenous LRRK2G2019S induces parkinsonian-like pathology in a nonhuman primate

    Get PDF
    Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease among the elderly. To understand pathogenesis and to test therapies, animal models that faithfully reproduce key pathological PD hallmarks are needed. As a prelude to developing a model of PD, we tested the tropism, efficacy, biodistribution, and transcriptional impact of canine adenovirus type 2 (CAV-2) vectors in the brain of Microcebus murinus, a nonhuman primate that naturally develops neurodegenerative lesions. We show that introducing helper-dependent (HD) CAV-2 vectors results in long-term, neuron-specific expression at the injection site and in afferent nuclei. Although HD CAV-2 vector injection induced a modest transcriptional response, no significant adaptive immune response was generated. We then generated and tested HD CAV-2 vectors expressing LRRK2 (leucine-rich repeat kinase 2) and LRRK2 carrying a G2019S mutation (LRRK2G2019S), which is linked to sporadic and familial autosomal dominant forms of PD. We show that HD-LRRK2G2019S expression induced parkinsonian-like motor symptoms and histological features in less than 4 months
    • 

    corecore